Space Weather Highlights 27 August - 02 September 2018

SWPC PRF 2244 03 September 2018

Solar activity was at very low levels. Both Regions 2719 (S07, L=131 class/area Cro/040 on 23 Aug) and 2720 (N08, L=136 class/area Dao/100 on 25 Aug) quietly rotated off the disk on 29 Aug as areas of plage. Region 2720 resided on the disk as a low latitude, reverse polarity group. No Earth-directed CMEs were observed.

No proton events were observed at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit was at very high levels on 28-29 Aug and at high levels on 27 Aug, 30-31 Aug and 01-02 Sep). A peak flux of 97,630 pfu was observed at 28/2145 UTC.

Geomagnetic field activity ranged from unsettled to G1 (Minor) and G2 (Moderate) storm levels on 27 Aug followed by unsettled to active levels on 28 Aug. Quiet levels persisted on 29 Aug - 02 Sep. The period began under the continued, but waning, effects from the 19 and 20 Aug CMEs. This was coupled with influence from a positive polarity CH HSS. Solar wind speeds began the period near 550 km/s and gradually increased to a peak speed of 666 km/s observed at 17/1730 UTC. Total IMF reached 7 nT at 27/1607 UTC while the Bz component reached a maximum southward extent of -6 nT at 27/1627 UTC.

By midday on 28 Aug, field activity declined to quiet levels and remained so through the end of the summary period. The IMF was at nominal levels while solar wind speed gradually decreased to near 340 km/s by the end of the period.

Space Weather Outlook 03 September - 29 September 2018

Solar activity is expected to be at very low levels through the outlook period. A slight chance for low levels is possible from 05-24 Sep with the return of old Regions 2718 (S07, L=191), 2719 (S07, L=131) and 2720 (N08, L=136).

No proton events are expected at geosynchronous orbit.

The greater than 2 MeV electron flux at geosynchronous orbit is expected to be at high levels on 03-04 Sep, 13-20 Sep and 23-26 Sep due to recurrent CH HSS influence. Normal to moderate levels are expected on 05-12 Sep, 21-22 Sep and 27-29 Sep.

Geomagnetic field activity is expected to be at unsettled levels on 03 Sep due to effects from a SSBC. Unsettled to active levels are anticipated on 07-09 Sep, 11-17 Sep and 22-23 Sep with G1 (Minor) geomagnetic storm levels possible on 11 Sep, all due to CH HSS activity.

Daily Solar Data

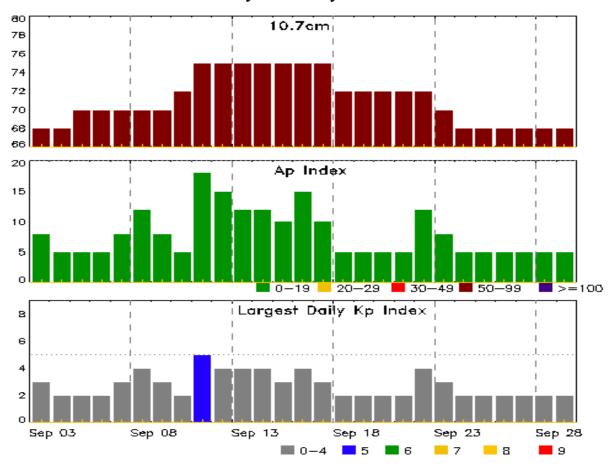
	Radio	Sun	Sunspot		X-ray				Flares			
	Flux	spot	Area	Area Background			X-ray	<u>y</u>		O	ptical	
Date	10.7cm	No.	(10 ⁻⁶ hemi.)	Flux		C M	X	S	1	2 3	<u>4</u>
27 August	70	12	50	A1.2	0	0	0	0	0	0	0	0
28 August	70	11	10	A1.5	0	0	0	0	0	0	0	0
29 August	71	0	0	A1.2	0	0	0	0	0	0	0	0
30 August	68	0	0	A1.2	0	0	0	0	0	0	0	0
31 August	68	0	0	A0.0	0	0	0	0	0	0	0	0
01 September	68	0	0	A0.0	0	0	0	0	0	0	0	0
02 September	68	0	0	A0.0	0	0	0	0	0	0	0	0

Daily Particle Data

	(pro	Proton Fluenotons/cm ² -da			-	Electron Flue etrons/cm ² -d	
Date	>1 MeV	>10 MeV	>100 MeV		>0.6 MeV	>2MeV	>4 MeV
27 August	4.	.2e+06	1.8e+04	3.	.6e+03	8.80	e+08
28 August	2.	.6e+06	1.7e+04	3.	.5e+03	3.50	e+09
29 August	1.	.7e+06	1.7e+04	3.	.5e+03	3.10	e+09
30 August	2.	.1e+06	1.7e+04	3.	.5e+03	3.20	e+09
31 August	2.	.5e+06	1.7e+04	3.	.5e+03	1.9	e+09
01 September	1.	.9e+06	1.8e + 04	3.	.5e+03	1.0	e+09
02 September	2.	.4e+06	1.8e+04	3.	4e+03	7.4	e+08

Daily Geomagnetic Data

	Mi	ddle Latitude	H	igh Latitude	Estimated			
	Fre	edericksburg		College	Planetary			
Date	A	K-indices	A	K-indices	A	K-indices		
27 August	20	3-3-3-4-4-4-2	56	2-2-6-6-6-7-5-1	26	2-3-3-4-4-6-5-3		
28 August	9	3-3-2-3-2-1-1-2	21	3-2-3-6-5-0-1-0	10	4-3-2-3-2-1-0-1		
29 August	7	2-2-2-2-2-2	5	1-1-1-3-1-1-1	6	2-2-1-1-1-2-1-2		
30 August	5	2-1-1-2-2-0-1-2	2	1-1-1-1-0-0-0-0	4	2-1-1-1-1-0-1-2		
31 August	4	1-1-1-1-2-1-2-0	4	1-1-0-2-2-2-0	5	2-1-1-1-1-2-2-1		
01 September	5	1-1-0-2-3-1-1-1	2	1-1-0-0-1-0-1-1	5	1-1-1-1-2-1-2-1		
02 September	5	1-2-2-1-1-1-2	2	1-1-1-0-0-1-1-1	6	2-2-2-1-1-1-2		



Alerts and Warnings Issued

Date & Time of Issue UTC	Type of Alert or Warning	Date & Time of Event UTC
27 Aug 0856	EXTENDED WARNING: Geomagnetic K	= 4 25/2109 - 27/1500
27 Aug 0902	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	18/1410
27 Aug 1359	EXTENDED WARNING: Geomagnetic K	= 4 25/2109 - 27/2100
27 Aug 1633	WARNING: Geomagnetic $K = 5$	27/1632 - 2000
27 Aug 1739	ALERT: Geomagnetic $K = 5$	27/1739
27 Aug 1749	WARNING: Geomagnetic $K = 6$	27/1748 - 2000
27 Aug 1759	ALERT: Geomagnetic $K = 6$	27/1759
27 Aug 1837	EXTENDED WARNING: Geomagnetic K	= 4 25/2109 - 28/0300
27 Aug 1912	ALERT: Geomagnetic $K = 5$	27/1912
27 Aug 1914	EXTENDED WARNING: Geomagnetic K	= 5 27/1632 - 2359
28 Aug 0203	EXTENDED WARNING: Geomagnetic K	= 4 25/2109 - 28/0900
28 Aug 0901	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	18/1410
29 Aug 0859	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	18/1410
30 Aug 0900	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	18/1410
31 Aug 0859	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	18/1410
01 Sep 0901	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	18/1410
02 Sep 0900	CONTINUED ALERT: Electron 2MeV Integral Flux >= 1000pfu	18/1410

Twenty-seven Day Outlook

	Radio Flux	Planetary	Largest		Radio Flux	Planetary	Largest
Date	10.7cm	A Index	Kp Index	Date	10.7cm	A Index	Kp Index
03 Sep	68	8	3	17 Sep	75	10	3
04	68	5	2	18	72	5	2
05	70	5	2	19	72	5	2
06	70	5	2	20	72	5	2
07	70	8	3	21	72	5	2
08	70	12	4	22	72	12	4
09	70	8	3	23	70	8	3
10	72	5	2	24	68	5	2
11	75	18	5	25	68	5	2
12	75	15	4	26	68	5	2
13	75	12	4	27	68	5	2
14	75	12	4	28	68	5	2
15	75	10	3	29	68	5	2
16	75	15	4				

Energetic Events

		Time		X-	-ray	Optio	cal Informat	ion	Peak		Sweep Freq	
			Half		Integ	Imp/	Location	Rgn	Radi	o Flux	Inten	sity
Date	Begin	Max	Max	Class	Flux	Brtns	Lat CMD	#	245	2695	II	IV

No Events Observed

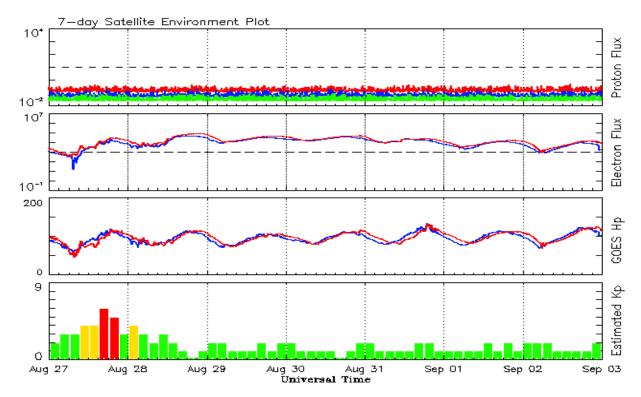
Flare List

			Optical								
	Time		X-ray	Imp/	Location	Rgn					
Date Be	gin Max	End	Class	Brtns	Lat CMD	#					

Region Summary

	Locatio	n	Su	nspot C	haracte	ristics				I	Flares	1			
		Helio	Area	Extent	Spot	Spot	Mag	X	K-ray			0	ptica	.1	
Date	Lat CMD	Lon	10 ⁻⁶ hemi.	(helio)	Class	Count	Class	C	M	X	S	1	2	3	4
		Regio	on 2719												
19 Aug	S06E43	133	10	3	Bxo	5	В								
20 Aug	S07E29	134	10	4	Bxo	5	В								
21 Aug	S12E15	135	10	5	Bxo	5	В								
22 Aug	S06E03	133	10	1	Axx	2	A								
23 Aug	S07W08	131	40	5	Cro	5	BG								
24 Aug	S08W21	131	30	5	Cro	4	В				1				
25 Aug	S06W36	133	30	5	Cro	4	В								
26 Aug	S06W53	136	10	1	Axx	1	A								
27 Aug	S06W66	136	plage												
28 Aug	S06W81	138	plage												
								0	0	0	1	0	0	0	0
Crossed	West Limb) .													
Absolut	e heliograp	hic lon	gitude: 1	33											
		Regi	on 2720												
24 Aug	N08W24	133	30	4	Dro	5	В								
24 Aug 25 Aug	N08W39	136	100	4 6	Dao	<i>7</i>	В				2				
26 Aug	N08W55	138	60	8	Cso	5	В				2				
20 Aug 27 Aug	N08W68	138	50	6	Hsx	2	A								
27 Aug 28 Aug	N07W83	137	10	4	Axx	1	A								
29 Aug	N07W98	142	plage	4	πлλ	1	А								
29 Aug	1407 44 30	144	prage					0	0	0	2	0	0	0	0
<i>-</i>								J	U	U	4	U	U	U	U

Crossed West Limb. Absolute heliographic longitude: 133



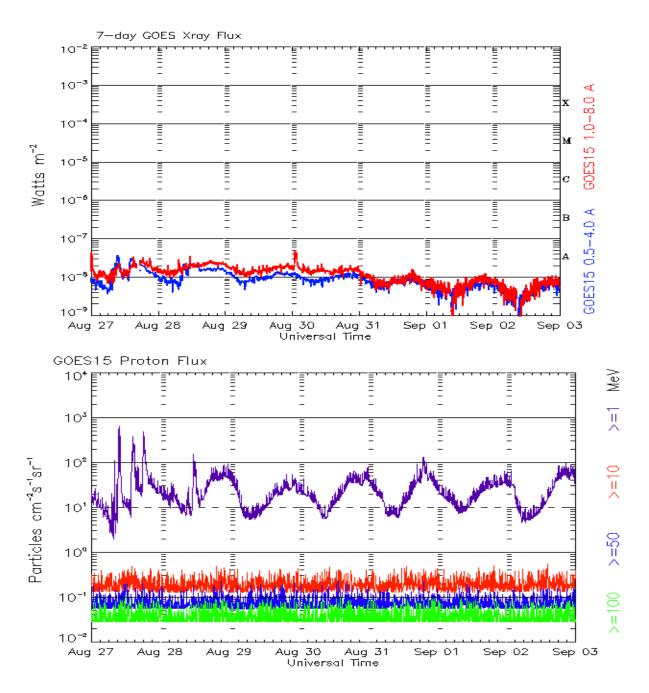
Recent Solar Indices (preliminary) Observed monthly mean values

	S	Sunspot N				Radio	Flux	Geomagnetic		
	Observed values	•		th values		Penticton		Planetary	-	
Month	SEC RI	RI/SEC	SEC		_	10.7 cm	Value	Ap	Value	
				2016				•		
September	37.4	26.8	0.72	32.1	19.9	87.8	83.7	16	11.3	
October	30.0	20.0	0.67	31.1	18.9	86.1	82.5	16	11.6	
November	22.4	12.8	0.57	29.4	17.9	78.7	81.1	10	11.6	
December	17.6	11.1	0.64	28.1	17.1	75.1	80.0	10	11.4	
				2017						
January	28.1	15.7	0.55	27.3	16.7	77.4	79.4	10	11.3	
February	22.0	15.8	0.71	25.5	15.9	76.9	78.7	10	11.3	
March	25.4	10.6	0.42	24.6	15.4	74.6	78.6	15	11.5	
April	30.4	19.4	0.64	24.3	14.9	80.9	78.4	13	11.5	
May	18.1	11.3	0.62	23.1	14.0		77.7	9	11.3	
June	18.0	11.5	0.64	22.0	13.3		77.3	7	11.3	
July	18.8	10.7	0.59	20.8	12.6	5 77.7	76.8	9	11.0	
August	25.0	19.6	0.80	19.7	11.8		76.3	12	10.7	
September		26.2	0.62	18.6	11.0	92.0	75.9	19	10.3	
October	16.0	7.9	0.49	16.8	10.0	76.4	75.1	11	9.8	
November	7.7	3.4	0.44	15.7	9.2		74.6		9.5	
December	7.6	4.9	0.64	15.7	9.1			8	9.4	
				2018						
January	7.8	4.1	0.51	15.0	8.6	70.0	74.0	6	9.3	
February	16.0	6.4	0.40	13.7	7.6	72.0	73.3	7	9.1	
March	6.0	1.5	0.25			68.4		8		
April	7.0	5.3	0.76			70.0		7		
May	15.0	7.9	0.53			70.9		8		
June	19.7	9.5	0.48			72.5		7		
July	1.3	1.0	0.77			69.7		6		
August	10.0	5.3	0.53			69.1		10		
August	10.0	5.3	0.53			69.1		10		

Note: Values are final except for the most recent 6 months which are considered preliminary. Cycle 24 started in Dec 2008 with an RI=1.7.

Weekly Geosynchronous Satellite Environment Summary Week Beginning 27 August 2018

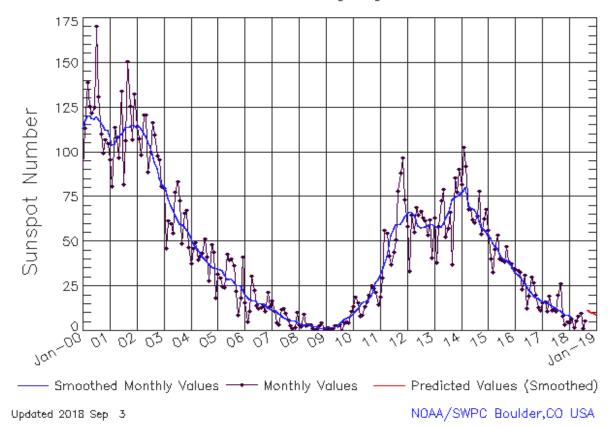
The proton flux plot contains the five-minute averaged integral proton flux (protons/cm²-sec -sr) as measured by the SWPC Primary GOES satellite, near West 75, for each of three energy thresholds: greater than 10, 50, and 100 MeV.


The electron flux plot contains the five-minute averaged integral electron flux (electrons/cm²-sec -sr) with energies greater than 2 MeV by the SWPC Primary GOES satellite.

The Hp plot contains the five minute averaged Hp magnetic field component in nanoteslas (nT) as by the SWPC Primary GOES satellite. The Hp component is parallel to the spin axis of the satellite, which is nearly parallel to the Earth's rotation axis.

The Estimated 3-hour Planetary Kp-index is derived at the NOAA Space Weather Prediction Center using data from the following ground-based magnetometers: Boulder, Colorado; Chambon la Foret, France; Fredericksburg, Virginia; Fresno, California; Hartland, UK; Newport, Washington; Sitka, Alaska. These data are made available thanks to the cooperative efforts between SWPC and data providers around the world, which currently includes the U.S. Geological Survey, the British Geological Survey, and the Institut de Physique du Globe de Paris.

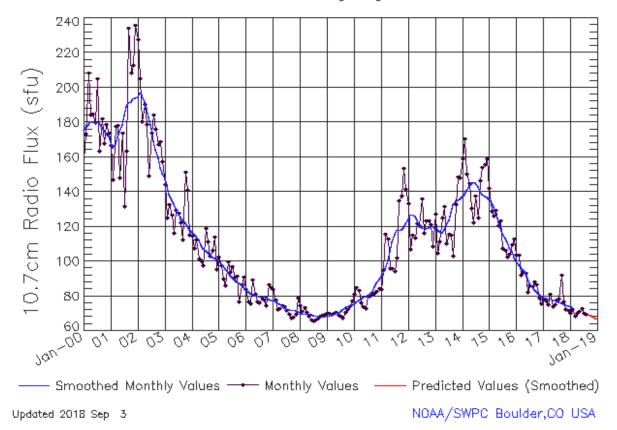
The data included here are those now available in real time at the SWPC and are incomplete in that they do not include the full set of parameters and energy ranges known to cause satellite operating anomalies. The proton and electron fluxes and Kp are 'global' parameters that are applicable to a first order approximation over large areas. H parallel is subject to more localized phenomena and the measurements generally are applicable to within a few degrees of longitude of the measuring satellite.


Weekly GOES Satellite X-ray and Proton Plots Week Beginning 27 August 2018

The x-ray plots contains five-minute averages x-ray flux (Watt/ m^2) as measure by the SWPC primary GOES X-ray satellite, usually at West 105 longitude, in two wavelength bands, 0.05 - 0.4 and 0.1 - 0.8 nm. The letters A, B, C, M and X refer to x-ray event levels for the 0.1 - 0.8 nm band.

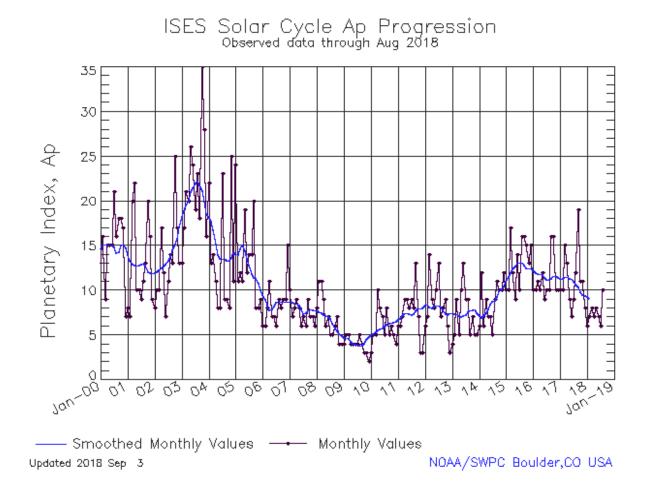
The proton plot contains the five-minute averaged intergral flux units (pfu = protons/cm 2 -sec -sr) as measured by the primary SWPC GOES Proton satellite for each of the energy thresholds: >1, >10, >30, and >100 MeV. The P10 event threshold is 10 pfu at greater than 10 MeV.

ISES Solar Cycle Sunspot Number Progression Observed data through Aug 2018



Smoothed Sunspot Number Prediction

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2010	9	10	11	13	15	16	17	17	20	23	27	29
	(1)	(2)	(3)	(5)	(5)	(6)	(7)	(7)	(8)	(9)	(9)	(10)
2011	19	30	56	54	42	37	44	51	78	88	97	73
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2012	58	33	64	55	69	65	67	63	61	53	62	41
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2013	63	38	58	72	79	53	57	66	37	86	78	90
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2014	82	102	92	68	68	62	60	64	78	54	62	68
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2015	56	40	33	45	53	40	40	39	47	38	37	35
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2016	34	34	33	23	31	12	19	30	27	20	13	11
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2017	16	16	11	19	11	12	11	20	26	8	3	5
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2018	4	6	2	5	8	10	1	5	12	11	10	10
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
2019	9	8	8	7	7	6	6	6	5	5	4	4
	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)


ISES Solar Cycle F10.7cm Radio Flux Progression Observed data through Aug 2018

Smoothed F10.7cm Radio Flux Prediction

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2010	76	77	78	78	79	80	80	81	82	85	88	90
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2011	91	93	96	100	106	111	115	118	118	118	120	122
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2012	124 (***)	127 (***)	127 (***)	126 (***)	124 (***)	121 (***)	120 (***)	119 (***)	119 (***)	119 (***)	120 (***)	120 (***)
2013	119	118	117	117	118	121	124	128	132	135	135	136
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2014	137	139	141	144	145	146	145	143	140	138	137	137
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2015	136 (***)	134 (***)	131 (***)	127 (***)	123 (***)	120 (***)	116 (***)	113 (***)	111 (***)	108 (***)	105 (***)	103 (***)
2016	100	98	97	95	93	90	88	86	84	83	81	80
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2017	79	79	79	78	78	77	77	76	76	75	75	74
	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)	(***)
2018	74 (***)	73 (***)	72 (1)	71 (1)	70 (2)	70 (3)	70 (4)	69 (4)	69 (5)	69 (6)	68 (7)	68 (8)
2019	67	67	66	65	65	65	64	64	63	63	63	63
	(8)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)

Solar Cycle Comparison charts are temporarily unavailable.

Preliminary Report and Forecast of Solar Geophysical Data (The Weekly)

Published every Monday by the Space Weather Prediction Center.

U.S. Department of Commerce NOAA / National Weather Service Space Weather Prediction Center 325 Broadway, Boulder CO 80305

Notice: The 27-day Outlook, Satellite Environment, X-ray and Proton plots have been redesigned. Comments and suggestions are welcome SWPC.Webmaster@noaa.gov

The Weekly has been published continuously since 1951 and is available online since 1997.

http://spaceweather.gov/weekly/ -- Current and previous year

http://spaceweather.gov/ftpmenu/warehouse.html -- Online achive from 1997

http://spaceweather.gov/ftpmenu/ -- Some content as ascii text

http://spaceweather.gov/SolarCycle/ -- Solar Cycle Progression web site

http://spaceweather.gov/contacts.html -- Contact and Copyright information http://spaceweather.gov/weekly/Usr_guide.pdf -- User Guide

